An analysis of the coefficient of f2 shows that it is negative for anylagsofthe condensed phase (any rel-
ative slips pi/py >3n/(%+1) (8<0.419, in the case w=5/4). Here the singularity realized in a divergent chan~
nel is obviously a saddle-point if we do not bear in mind drop production nor the influence of the curvature of
the channel profile, Drop agglomeration (#<0), which predominates over fragmentation, and the positive curva-
ture of the channel profile (y" > 0) only strengthen this conclusion, The saddle-point nature of the singularity
at higher contents of condensed phase predominating over drop fragmentation in the negative curvature of the
profile (i.e., the same as in the case of a pure gas) is possible only for slips of not too high a magnitude, In
the opposite case det || aij I > 0 and the nature of the singularity differs. The transition point beyond the speed
of sound loses the nature of a saddle point.
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USE OF THE PARAMETRIX METHOD FOR ESTIMATING
EFFECTIVE ELASTIC MODULI OR RANDOMLY
NONHOMOGENEOUS ELASTIC BODIES

A. E. Puro UDC 539.31

The magnitude of the elasticity tensor of a comparison body remains unclarified if we use a singu-
lar approximation [1] to estimate the effective values of the elasticity tensor, Below we will use

a parametrix method [2] to determine the first approximation of the random component of the de-
formation tensor and the effective values of the elasticity tensor, and will also compare the exact
solution for one particular heterogeneous and a previously used approximation.

The effective value of the elasticity tensor A’ is determined by
M<e> =<h><e> +<Me’>,
where A =A—<A>; g'=g—<&>, and the stress tensor satisfies the equilibrium equation
v(ke) = 0.

The solution of the equation will be found in the form of a space potential
¢ ={ def, G (x,y) (v} dv, , @)

where def, =(1/2)[Vx+ (%)T); and G(x, y) is the parametrix [4] of the equilibrium equation, which coincides
with the "principal® polar part of Green's tensor of a heterogeneous and isotropic medium,

We assume that &€ =gl +en, e¥=const, and substituting Eq. (1) in the equilibrium equation, we obtain the
integral equation
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f@) = Vs Ma)e® + [ v (x) def G (x, y) E(y) dvy @)
whose solution is constructed as usual by the iteration method,
Let us consider in detail the case of an isotropic, randomly heterogeneous medium
Aijmn = Midmn + 2u8;m0;,.
The parametrix of the equilibi‘ium equation [2] is given by

1 - 1
Y = Gmmrawmn 7+ sy Cunee =)

where r= Ix—y l; and ‘Sij is the Kronecker symbol,

We will limit ourselves to the first approximation in order to estimate the random component of the
deformation tensor, In this case

1o 1 Tyijt
A" =52 | LH L (r) ry8an + 2H, (1) ratim] dvy s (3)

o 1 Tyij
W' = g | P ((H )+ Hy () e -+ 2 0 () — Ha(7)
X T+ [Hg (1) 70 - 2H (1) Tmemsl) 815 Tonnadvy
where we have set [5]
SV@VVEIN g or. S V@) N\ I,
Gmrmy, =0y {Tmamy ) = B0y

S W@ VAE)Y N\ . S rEwEN\ r.
Gormm,, ~ B0 {(Tmtmy )~ 0O
SV EVAON nx. -7 (X)) Ve (y) \
N ry S N 2

for the cross-correlation functions for the case of randomly isotropic uniform fields,

= Hy(r)+.

Transforming the integrals (3}, we obtain an estimate of the effective values,

©

Py = KB — 15 WInp + = [ Ha(r)dr; (4)

)
b= >+ [0+ 3 o 0) + Hu () + 55 HL ()~ Hy () dr
0

Here, we have used the equations

o

1
> 25 H (r) dr8y,;

1 r,r
Zlelr(r) KR Gy =

1 Tl iTs 1%
w j‘ H(r) 2L dv = g H (r)dr [818:5 + 83:0ms + 818l

We may assume that the resulting equations have a relatively high precision for a random medium with
constant Poisson coefficient, i.e., u(r)=kA(r),since in this case the parametrix is the influence function
of the equation AjjmnViemn =0. The effective values correspondingly have the form

uy = <pd — [(6 + 16K)/15(1 +2k)] ¢ ' Tn p,
Ay = <Ay — [(15 4 12k — 4B2)A5(1 1 26Xy In p.

The exact effective value A; has been calculated [6, 7] for a heterogeneous two-phase medium with
w=const. We will calculate in the general case for a medium with constant rigidity modulus, We take
the divergence from the equilibrium equation obtaining
grad [(A 4-2p) divu] — prot rot u = 0,
A[(A +2u) divu]=0.
According to the mean value theorem [8] for harmonic functions,
(M4 2p)diva = { (A +2p) divuds/anR = (b + 2p)divu) . (5)
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Integration is conducted over a sphere of arbitrary radius, i.e., averaging relative to a spherical layer
yields a value (A+2y) div u at the center of the sphere, We find from Ea. (5} that

(div uy = (b div wy + 2pddiv wy (A - 2u)),
and, consequently,

Ay = (hdiv ud/Kdivud = A/ - 2p)t — 2. ®)

To compare the estimate (4) and a previous estimate [3] to the exact value, we will decompose 6)
in a series in moments of the random component,

B A+ 2 _ .y my (7
}\,1— ~ - '—ZM—<7V —(l+2}L)+<h—}-2}i)2 ey
14 3 —E
et} <A 20

where
mp = (A — <MD= (M)
The estimate (4) for this medium
A= ) — A Tn(h + 20> = (A — malh 2> 4 (U2)myf<h 4+ 200 —
is more accurate to within three terms than [3], which gave only the first two terms of the expansion (7).

The exact value (6) can be obtained by using Green's tensor for the given medium

—1 1 g 1 a i i
Gr(xy)= I‘sﬁf N GE=m (a—z = y;)(aT;-lz = x]) dv: + g Guiopp = Tosi) (8)

Let us prove that when A(z) =const, Eq. (8) is transformed into a well-known equation for a homo~
geneous medium, i.e., the integral

(e Lt Yo Lt \g 0 L 0 1 g 9,8 3
5(6zi [y—z[)(@zi lz—x[)duz - Byi_s [y — 2] 9z; [x — 2 dv; = 2“5}:5;7. &)

The integral in the right side of Eq. (9) is the derivative of the space potential (attraction} with density
1/p (p=|y—z|) for an infinite space and, according to [9], is equal to the integral over a sphere with center
at y and radius |y—x| =r,

7
d 1 Z.—Y;
SIY*Z!M,fX—ZldUZ —/mS dpa—j—r-z —2n IT_-’
]

Direct substitution of Eq. (8) in the equilibrium equation verifies that Eq. (8) is a Green's function,

We will take as the Levi function {4]

i a i a 1 . 1
6 (¥ = I (T r ey (e o] N7, T+ ey Gurm — ). a0

We will calculate 5% using Eq. (2) to a first approximation, Eq, (10) being utilized as the integrand,
Introducing the cross—correlation function of isotropic uniform fields A and u,
VAGIME) + 2u(2)]> = My(e)ip; <vn(u)/ IME) + 20z = My(0)o/0;
M@V My IM2) 4 20(@) D=y, H\(p, R, 0)>; W(2)y,u)/ IM2)+2u(z)]>= v,Halo, R, 0),
where p=|ly—z|; R=Ix~z!; and cos® =pR/pR,
4 %

ey =g | [Ma(0) 4 5 Maio) | doeiydin = — (3¢

i}

2
> :DT "L \) , 51&

AT frerdin 1L

In calculating the integrals
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Wepwy =15 | {7 0 B, e)am+a Hy (0 R 0 0il{E T a2 1) o

(12)
(A2 2 My
= [<)~—l—2p.> +3 <x+2u>]8mos
, ” I;“’ 2
<p' 5171:1) = (\K+2P/ + 3 <Ll‘;!-l’t2p>) 81111 (13)

it is assumed that integration of y over the entire space results in an equation that depends on R, such that

[/} 0 1 1
( )51 ay i3 dvz EH(O)si."

The estimate of the effective value of the compression modulus k=A+(2/3)u is given by

/xw'\ 8/ M N & N
E, = (k> + (N+ M)pp\/o —(k)—\ —.—ZH{ 9}{\14—211/ 9§x+2p/ , (14)
/ Epp pp> 1-—--—/———\__-—/-———\
EANES A AN R T
taking into account Eq. (11)-(13). When u =const, Eq. (14) is transformed into the exact solution. We will
assume that 1/(A +2yu) is given by

/(0 4 2p) ~ AKA +2p>, orby /(A +2p) & UM+ 2u),

in Eq. (14), obtaining estimates that correspond to thebsingular approximation [1] and also those obtained
in 3].
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